

SETTORE VIII - AMBIENTE E MOBILITA'

PIANO INTEGRATO DI SVILUPPO URBANO SOSTENIBILE PORDENONE IN RETE

Riqualificazione Urbana - Opere infrastrutturali - Arredo Urbano

"Vie d'Acqua e di Terra" - CONNESSIONE DELLE AREE VERDI
PERCORSO CICLOPEDONALE PARCO DEL SEMINARIO - VIA TERME ROMANE - VIA BELLASIO

PROGETTO DEFINITIVO

COORDINAMENTO dott.ssa Silvia Cigana

RESPONSABILE DEL PROCEDIMENTO geom. Miriam Gianessi

GRUPPO DI PROGETTAZIONE

ing. Andrea Brusadin

ing. Pasquale Lucia (collaboratore esterno)

OTTOBRE 2011

RELAZIONI

ELABORATO

Relazione di Calcolo Strutturale

11.1

Sommario

1.	NORMATIVA DI RIFERIMENTO	2
2.	VITA NOMINALE E CLASSI D'USO	4
3.	DESCRIZIONE GENERALE DELL'OPERA	5
4.	RELAZIONE ILLUSTRATIVA DEI MATERIALI DA COSTRUZIONE	6
5.	RELAZIONE PRELIMINARE GEOTECNICA E SULLE FONDAZIONI	12
6.	RELAZIONE PRELIMINARE DI CALCOLO	16
	Materiali	31
	Armature	31
	Azioni e carichi	32
	Definizioni di carichi concentrati	32
	Definizioni di carichi superficiali	32
	Definizioni di carichi potenziali	33
	Piastre C.A.	33
	Pareti C.A.	33
	Dati di modellazione	34
	Carichi concentrati	34
	Definizioni gusci	35
	Verifiche	36
	Verifiche piastre e pareti C.A.	36

NORMATIVA DI RIFERIMENTO

Legge n. 1086 del 5/11/1971

Norme per la disciplina delle opere di conglomerato cementizio armato normale, precompresso ed a struttura metallica

Legge n. 64 del 2/2/1974

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

NTC08

D.M. 14 Gennaio 2008 "Norme tecniche per le costruzioni"

Circ.617

Circolare 02/02/2009 n. 617 "Ministero delle Infrastrutture e dei Trasporti - Istruzioni per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008"

Riferimento normativo europeo

EC₀

UNI EN 1990:2006 "Criteri generali di progettazione strutturale"

EC1-1-1

UNI EN 1991-1-1:2004 - Eurocodice 1 - Azioni sulle strutture - Parte 1-1: "Azioni in generale - Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici"

EC1-1-3

UNI EN 1991-1-3:2004 Eurocodice 1 - Azioni sulle strutture - Parte 1-3: "Azioni in generale - Carichi da neve"

EC1-1-4

UNI EN 1991-1-4:2005 Eurocodice 1 - Azioni sulle strutture - Parte 1-4: "Azioni in generale – Azioni del vento"

EC1-2

UNI EN 1991-2:2005 Eurocodice 1 - Azioni sulle strutture - Parte 2: "Carichi da traffico sui ponti"

EC2-1-1

UNI EN 1992-1-1:2005 Eurocodice 2 - Progettazione delle strutture di calcestruzzo - Parte 1-1: "Regole generali e regole per gli edifici"

EC2-2

UNI EN 1992-2:2006 Eurocodice 2 - Progettazione delle strutture di calcestruzzo - Parte 2: "Ponti di calcestruzzo - Progettazione e dettagli costruttivi"

Eurocodice 3 (ENV 1993) Strutture in acciaio

Eurocodice 4 (ENV 1994) Strutture composte acciaio-calcestruzzo

Eurocodice 5 (ENV 1995) Strutture in legno

Eurocodice 6 (ENV 1996) Strutture in muratura

Eurocodice 7 (ENV 1997) Geotecnica

Eurocodice 8 (ENV 1998) Strutture in zona sismica

Eurocodice 9 (ENV 1999) Strutture in lega d'alluminio

ENV 197 Cementi

ENV 206 Calcestruzzo

ENV 10080 Acciaio ad aderenza migliorata

ENV 10138 Acciai per precompressione

2. VITA NOMINALE E CLASSI D'USO

2.1. Vita nominale

Secondo quanto riportato nelle NTC2008 al §2.4.1 la vita nominale concordata con la committenza è di 50 anni.

2.2. Classe d'uso

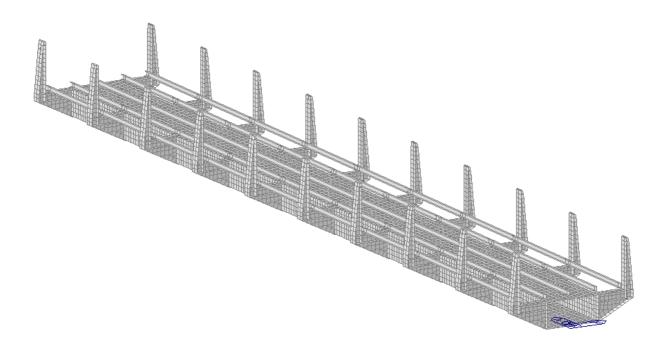
Con riferimento alle conseguenze di una possibile interruzione di operatività il manufatto in oggetto è classificabile come segue, secondo le NTC2008 §2.4.2:

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente.

Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti

2.3. Periodo di riferimento

 V_N 50 anni


C_U 1.00 Corrispondente alla Classe II (Tab. 2.4.II)

V_B 50 anni Secondo quanto definito nella (2.4.1 delle NTC 2008)

3. DESCRIZIONE GENERALE DELL'OPERA

Analizzate le caratteristiche del sito, definiti i carichi di progetto preliminari e in data l'area a fortemente esposta ad agenti degradanti (umidità, zona storicamente soggetta a forti escursioni idrologiche, possibile presenza di parassiti naturali) si consiglia l'impiego dell'acciaio adeguatamente protetto mediante zincatura a caldo e verniciatura adeguata alfine di realizzare la struttura portante della passerella pedonale. Data la luce media del manufatto e la possibilità di varare la passerella in un unico elemento, si è ipotizzata la tipologia a cassone. Pertanto il manufatto in oggetto è costituito da un corpo centrale scatolare e delle nervatura poste ad interasse di 2.20m impiegabili per la realizzazione dei parapetti.

Inoltre, dato il contesto paesaggistico, l'impiego dell'acciaio verniciato risulta esser poco invasivo, con idonea resa cromatica (RAL 8016).

Modello FEM impiegato per analisi preliminare

4. RELAZIONE ILLUSTRATIVA DEI MATERIALI DA COSTRUZIONE

4.1. Acciaio da carpenteria

Gli elementi del manufatto aventi struttura metallica e/o di struttura composta devono utilizzare acciai conformi alle norme armonizzate della serie UNI EN 10025 se laminati, UNI EN 10210 se tubi senza saldatura e UNI EN 10219-1 se tubi saldati, recanti comunque la Marcatura **CE**. In ogni caso gli acciai impiegati per le carpenterie metalliche dovranno esser conformi a quanto prescritto al §11.3.4 delle NTC 2008.

Gli acciai per strutture saldate dovranno esser conformi a quanto prescritto al § 11.3.4.4 delle NTC 2008 e alle ivi citate normative europee armonizzate.

Le saldature e le unioni bullonate dovranno corrispondere a quanto prescritto rispettivamente al §11.3.4.5 e al §11.3.4.6 delle già menzionate NTC 2008.

Gli elementi strutturali in acciaio da impiegarsi nell'ambito del presente progetto dovranno garantire i requisiti prestazionali minimi di seguito indicati.

Acciai da carpenteria impiegati: si impiegherà acciaio da carpenteria **S 275 (Fe 430)** o superiore, se non espressamente riportato nella definizione dell'elemento negli elaborati grafici allegati alla presente.

Tabella 1: caratteristiche fisiche e meccaniche minime dell'acciaio S 275(Fe 430)

Cara	Caratteristiche generali									
Es	:Modulo elastico	210000	MPa							
G	: Modulo di elasticità trasversale	80769	MPa							
ν	: Coefficiente di Poisson	0.30								
α	:Coefficiente di dilatazione termica	1.2E-05	1/°C							
ρ	: Massa	7850	kg/mc							
δ	: Peso specifico	77	kN/mc							
ΚV	: Resilienza T _{ED} =-20°C	>27	J							
Spes	sore sezione < 40mm									
$f_{u,k}$: Resistenza ultima caratteristica	430	MPa							
f _{v,k}	: Resistenza a snervamento caratteristica	275	MPa							
Spessore sezione > 40mm e <80mm										
$f_{u.k}$: Resistenza ultima caratteristica	410	MPa							
f _{v.k}	: Resistenza a snervamento caratteristica	255	MPa							

Coefficienti di sicurezza adottati lato materiale						
γ _{мο} : Coeff. di sicurezza a resistenza a rottura	1.05					
γ _{M1} : Coeff. di sicurezza a resistenza all'instabilità delle membrature	1.05					
γ_{M2} : Coeff. di sicurezza a resistenza della frattura per sez. tese indebolite da fori	1.25					

4.2. Calcestruzzo

Si impiegherà calcestruzzo prestazionale conforme alle UNI EN 206-1:2006 per quanto non specificato dal Decreto Ministeriale del 14 gennaio 2008 sulle Norme Tecniche per le Costruzioni (NTC 2008).

Secondo quanto prescritto dalle sopracitate NTC 2008 la classe di resistenza minima da impiegarsi per strutture semplicemente armate è la C16/20 (Rck >20MPa).

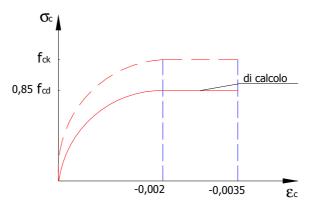


Figura 1: Diagramma tensione-deformazione del calcestruzzo

Calcestruzzi impiegati: per i plinti di fondazione si impiegherà calcestruzzo di classe C32/40, le cui caratteristiche sono di seguito elencate.

Tabella 2: caratteristiche fisiche e meccaniche del calcestruzzo C32/40

Caratteristiche generali								
E _{cm}	: Modulo elastico secante	33643	MPa					
G	: Modulo a taglio	2336	MPa					
ν	: Coefficiente di Poisson	0.20						
ν	: Coefficiente di Poisson CLS fessurato	0.00						
α	: Coefficiente di dilatazione termica	1.00E-05	1/°C					
ρ	: Massa	2500	kg/mc					
δ	: Peso specifico	25	kN/mc					

Caratteristiche fisiche								
f_{ck}	: Resistenza a compressione cilindrica caratteristica a 28gg	33	MPa					
R_{ck}	: Resistenza a compressione cubuca caratteristica a 28gg	40	MPa					
f_{bk}	: Valore caratteristico della tensione ultima di aderenza ($\ensuremath{\varphi} < 32\mbox{mm})$	4.88	MPa					
f _{ctk,0.05}	: Valore della resistenza a trazione caratteristico f.le 5%	2.17	MPa					
f _{ctk,0.95}	: Valore della resistenza a trazione caratteristico f.le 95%	4.03	MPa					
f_{cm}	: Resistenza a compressione cilindrica media	41.20	MPa					
$f_{\rm cfm}$: Resistenza media a trazione per flessione	3.72	MPa					
$f_{\rm ctm}$: Valore medio della resistenza a trazione assiale del CLS	3.10	MPa					
α	: Fattore che tiene conto degli effetti dei carichi di lunga.	0.85						
α_{50}	: Fattore per carichi di lunga su elementi di spessore < 50mm	0.80						
$oldsymbol{arepsilon}_{ ext{cu}}$: Deformazione a compressione ultima nel CLS	0.35%						
$\epsilon_{\scriptscriptstyle ext{cy}}$: Deformazione a compressione limite elastico nel CLS	0.20%						
f_{cd}	: Resistenza a compressione di progetto del CLS	17.71	MPa					
$f_{cd,rid}$: Resistenza a compressione di progetto del CLS lungo termine	18.81	MPa					
f _{cd,rid,50}	: Resistenza a compressione di progetto a lungo termine s<50mm	17.71	MPa					
$f_{\rm ctd}$: Valore di progetto della resistenza a trazione assiale del CLS	1.45	MPa					
f _{ctd,50}	: Valore di progetto della resistenza a trazione assiale del CLS s<50mm	1.16	MPa					
f_{bd}	: Valore di progetto della tensione ultima di aderenza ($\phi < 32\text{mm}$)	3.25	MPa					

Coefficienti di sicurezza adottati lato materiale					
	$\gamma_{\scriptscriptstyle C}~$: Fattore di sicurezza lato materiale	1.50			

4.2.1. Leganti

Si impiegheranno esclusivamente leganti idraulici previsti dalle disposizioni vigenti in materia, dotati di certificato di conformità - rilasciato da un organismo europeo notificato - ad una norma armonizzata della serie UNI EN 197 ovvero ad uno specifico Benestare Tecnico Europeo (ETA) dalle disposizioni vigenti in materia (L.26/5/1965, n. 595), con esclusione del cemento alluminoso.

L'impiego dei cementi di tipo C è limitato ai calcestruzzi per sbarramenti.

Qualora il calcestruzzo risulti esposto a condizioni ambientali chimicamente aggressive si devono utilizzare cementi per i quali siano prescritte adeguate proprietà di resistenza ai solfati e/o al dilavamento o ad eventuali altre specifiche azioni aggressive, secondo quanto prescritto dalle norme armonizzate europee e dalla normativa nazionale in vigore.

4.2.2. Inerti

Naturali o di frantumazione, saranno costituiti da elementi non gelivi e non friabili, privi di sostanze organiche, limose e argillose, di gesso ecc., in proporzioni nocive all'indurimento del conglomerato o alla conservazione delle armature.

La ghiaia o il pietrisco avranno dimensioni massime commisurate alle caratteristiche geometriche della carpenteria del getto ed all'ingombro delle armature.

E' concesso l'impiego d'inerti provenienti da processi di riciclo se preventivamente concordato con la D.L. e comunque questi dovranno essere conformi alla norma europea armonizzata UNI EN 12620 e, per gli aggregati leggeri, alla norma europea armonizzata UNI EN 13055-1. Gli aggregati da riciclo dovranno comunque esser presenti in percentuale secondo quanto prescritto dalle NTC 2008 §11.2.9.2 e specificatamente secondo quanto prescritto in tabella 11.2.III.

4.2.3. Additivi

Gli eventuali additivi da impiegarsi in accordo con la D.L. dovranno comunque essere conformi a quanto prescritto dalla UNI EN 934-2.

4.2.4. Acqua d'impasto

Per gli impasti sarà limpida, priva di sali (particolarmente solfati e cloruri) in percentuali dannose e non aggressiva conforme a quanto prescritto dalla UNI EN 1008: 2003.

4.2.5. Impasti

La distribuzione granulometrica degli inerti, il tipo di cemento e la consistenza dell'impasto saranno adeguati alla particolare destinazione del getto, ed al procedimento di posa in opera del conglomerato. Il quantitativo d'acqua sarà il minimo necessario a consentire una buona lavorabilità del conglomerato tenendo conto anche dell'acqua contenuta negli inerti.

Partendo dagli elementi già fissati il rapporto acqua-cemento, e quindi il dosaggio del cemento, sarà scelto in relazione alla resistenza richiesta per il conglomerato.

L'impiego degli additivi sarà subordinato all'accertamento dell'assenza di ogni pericolo di aggressività.

L'impasto sarà fatto con mezzi idonei ed il dosaggio dei componenti eseguito con modalità atte a garantire la costanza del proporzionamento previsto in sede di progetto.

4.3. Acciaio per armature lente

Non si porranno in opera armature eccessivamente ossidate, corrose, recanti difetti superficiali, che ne menomino la resistenza o ricoperte da sostanze che possono ridurne sensibilmente l'aderenza al conglomerato.

L'acciaio da cemento armato normale dovrà essere corrispondente a quanto prescritto al §11.3.2 delle NTC 2008. Si utilizzerà esclusivamente acciaio in tondo nervato **B450C** controllato in stabilimento.

Non si porranno in opera armature eccessivamente ossidate, corrose, recanti difetti superficiali, che ne menomino la resistenza, o ricoperte da sostanze che possono ridurne sensibilmente l'aderenza al conglomerato.

Acciai per armature lente impiegati: per tutte le strutture si impiegherà acciaio ad aderenza migliorata del tipo B450C.

Caratteristiche fisiche e meccaniche dell'acciaio B450C

Caratte	Caratteristiche generali									
Es	:Modulo elastico	210000	MPa							
G	: Modulo di elasticità trasversale	80769	MPa							
ν	: Coefficiente di Poisson	0.30								
α	:Coefficiente di dilatazione termica	1.2E-05	1/°C							
ρ	: Massa	7850	kg/mc							
δ	: Peso specifico	77	kN/mc							
KV	: Resilienza T _{ED} =-20°C	>27	J							
Caratte	eristiche fisiche									
$f_{t,nom}$: Resistenza ultima caratteristica	540	MPa							
$f_{v,nom}$: Resistenza a snervamento caratteristica	450	MPa							
$f_{y,d}$: Resistenza a snervamento di progetto	391	MPa							
$f_{b,d}$:Tensione tangenziale di aderenza di progetto	2.38	MPa							
ϵ_{su}	:Deformazione massima a rottura *	1.00%								
$\epsilon_{ ext{vd}}$:Deformazione massima a snervamento *	0.18%								

Coefficienti di sicurezza adottati lato materiale					
γ	; Fattore di sicurezza lato materiale	1.15			

4.4. Legno massiccio

Gli elementi lignei d'interesse strutturale da impiegarsi per la realizzazione dell'opera di cui in oggetto devono essere conformi a quanto prescritto al §11.7 delle NTC 2008. Nella fattispecie gli elementi in legno massiccio dovranno essere in accordo alla norma europea armonizzata UNI EN 14081 e recare Marcatura **CE** ove possibile, in alternativa il produttore/fornitore dovrà essere qualificato secondo quanto specificato al §11.7.10 delle NTC 2008.

Gli elementi strutturali in legno massiccio da impiegarsi nell'ambito del presente progetto dovranno garantire i requisiti prestazionali minimi di seguito indicati.

Legno massiccio impiegato: si impiegherà legno massiccio Nazionale classe **S (Castagno)** secondo UNI EN 338:2002.

Legno per uso strutturale tipo S (Castagno)

Caratteristich	Caratteristiche generali								
E _{0,mean}	: Modulo elastico medio // alle fibre	11000	MPa						
E _{90,mean}	: Modulo elastico caratteristico perpendicolare alle fibre	730	MPa						
E _{0,05}	: Modulo elastico caratteristico // alle fibre	8000	MPa						
G _{mean}	: Modulo di taglio medio	950	MPa						
ρ_{k}	: Massa volumica caratteristica	465	kg/m³						
$ ho_{m}$: Massa volumica media	550	kg/m³						
Caratteristich	ne fisiche								
$f_{m,k}$: Resistenza caratteristica a flessione	28.0	MPa						
$f_{t,0,k}$: Resistenza caratteristica a trazione // alla fibratura	17.0	MPa						
f _{t,90,k}	: Resistenza caratteristica a trazione perpendicolare alla fibratura	0.5	MPa						
$f_{c,0,k}$: Resistenza caratteristica a compressione // alla fibratura	22.0	MPa						
f _{c,90,k}	: Resistenza caratteristica a compressione perpendicolare alla fibratura	3.8	MPa						
$f_{v,k}$: Resistenza caratteristica a taglio	2.0	MPa						

Coefficienti di sicurezza adottati lato materiale					
γ_{w} : Fattore di sicurezza lato materiale	1.45				

5. RELAZIONE PRELIMINARE GEOTECNICA E SULLE FONDAZIONI

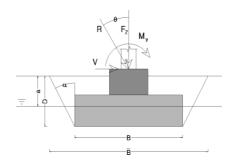
Dai dati emerse dalla relazione geologico-geotecnica del dott. Geologo Elena Ruzzene il terreno di fondazione nell'areo oggetto dell'intervento su cui grava direttamente il manufatto può essere descritto dai seguenti parametri:

				Parai	metri	geotec	nici							
Profondită bașe strato(m)	qo (hg/çmq)		R (NVs)	œ	Angloso d'attrijo(*)	Pasa di volume naturale (Vmc)		Modulo di Young (kg/cm/q)	Coesione non chenete (kg/crist)	Moduło pdom coesivi (kg/cmig)	o, c,ft	Modulo dinamico di taglio (kg/cmq)	Modulo edom incoerenti (kg/cnkg)	Pres.elf. 6.metá strato (kg/cmo)
0,4	55	Terreno vegetale												
1	8	Argilla inorganica med.consistente	4,26E-8	0,05		1.83	L		0,46	28	0,47	100		0,13
2.6	21	Sabbla e limo	8,06E-7		27	1,88	44	53				180	40	0,34
3	8	Argilla organica	4,62E-12	0,08		1,81			0,437	28	0,21	100		0,53
5,8	95	Sabbia ghialosa	2,75E-5		30	2,11	78	238			\Box	452	74	0,77
6.6		Argilla inorganica molto consistente	7,8E-9	0,07		2,01			1,053	67	6,02	169		1
7	39	Sabbia e limo	0,000124		26	2,03	38	98			1	263	44	1,06
9,4		Ghiaia sabbiosa	0,000539		32	2,27	85	668				851	91	1,23

Sabbia limosa

Φ = 26° angolo di attrito interno

c = 0 t/mq coesione


y = 1.8 t/mc peso di volume del terreno

In fase di progetto esecutivo e, successivamente, durante la direzione lavori in cantiere, sarà cura dei tecnici incaricati valutare con precisione l'esatta profondità di imposta fondazionale e il preciso strato di terreno sul quale graverà il manufatto. Per la valutazione della capacità portante, è stato considerato lo strato di terreno di sabbia-limosa:

Pertanto si ottengono i seguenti valori di capacità portante del terreno:

Geometria fondazione

В	2,90 m
Н	2,90 m
t	0,00 m
D	3,00 m
а	0,50 m

- D Profondità piano di posa della fondazione
- a Livello falda

Coefficienti parziali adottati per le azioni (NTC2008 §6.2.3.1.1)

Azione	Effetto	Coeff.	EQU	STR (A1)	GEO (A2)
Permanenti	Favorevole	24	0,90	1,00	1,00
	Sfavorevole	$\gamma_{\rm G1}$	1,10	1,30	1,00
Permanenti non strutturali	Favorevole	24	0,00	0,00	0,00
	Sfavorevole	$\gamma_{ m G2}$	1,50	1,50	1,30
Variabili	Favorevole	24	0,00	0,00	0,00
Variabili	Sfavorevole	$\gamma_{ m Qi}$	1,50	1,50	1,30

Coefficienti parziali per i parametri geotecnici (NTC2008 §6.2.3.1.2)

PARAMETRO	Grandezza associata	COEFF. PARZIALE	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tan Φ' _k	$\gamma_{\phi'}$	1,00	1,25
Coesione efficace	C' _k	$\gamma_{c'}$	1,00	1,25
Resistenza non drenata	C_{uk}	γ_{cu}	1,00	1,40
Peso dell'unità di volume	γ	γ_{γ}	1,00	1,00

Coefficienti di verifica

VERIFICA	Coeff. Parziale γ_{R}			
, <u>, , , , , , , , , , , , , , , , , , </u>	R1	R2	R3	
Capacità portante	1,00	1,80	2,30	
Scorrimento	1,00	1,10	1,10	

Caratteristiche geotecniche

Coefficienti parziali adottati nelle verifiche impiegati

	N _c	N _a	N_{γ}	k _p	
M1	22,25	11,85	8,00	2,56	69,00
M2	15,61	6,93	3,30	2,56	69,00

SLU di tipo geotecnico (GEO)

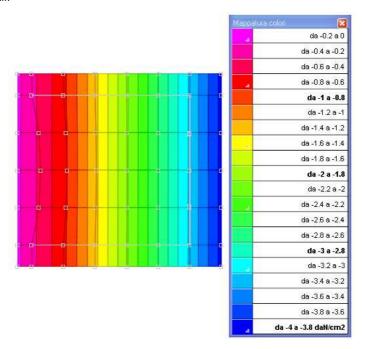
Collasso per carico limite dell'insieme terreno fondazione

Da quanto ricavato dalla relazione geologica allegata redatta dal --- sono stati desunti i seguenti parametri caratterizzanti il suolo di fondazione interessante il sito oggetto delle presenti opere.

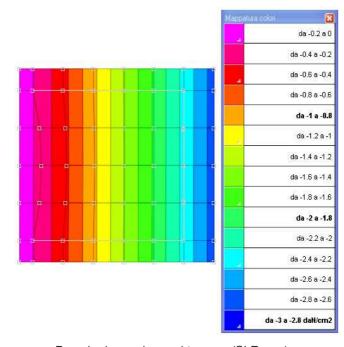
C'	valore medio della coesione	0,00	kPa
Φ'	valore medio dell'angolo di resistenza al taglio	26,00	deg
γ	Peso specifico del terreno	18,00	kN/m³
γ'	Peso specifico del terreno saturo	18,00	kN/m³

Formula di Meyerhof della capacità portante

		kPa	kg/cm ²
(M1)	$q_{\text{inn}} = c N_c \cdot s_c \cdot d_c + \bar{q} \cdot N_q \cdot s_q \cdot d_q + 0.5 \text{ yr B N}_y \cdot s_y \cdot d_y$	= 1503,3	14,75
(M2)	q _{im} =cN _c ·s _c ·d _c +\bar{q}·N _d ·s _g ·d _d +05 \bar{p}·B·N _g ·s _g ·d _g	= 826,35	8,11


Coefficienti per le verifiche

γ_{R}	2,30	Combinazine 2: (A1+M1+R3)
Q _{lim,GEO}	653,61 kPa	Combinazine 2. (AT+IVIT+110)


Pertanto è possibile adottare una pressione di progetto allo SLU pari a circa 6.50 kg/cm²

5.1. Progetto preliminare delle fondazioni

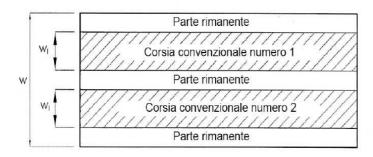
Vista la tipologia d'intervento in esame, si è scelto di adottare un sistema fondazionale del tipo a platea. La quota d'imposta dovrà essere ad una profondità tale da comportare una totale rimozione dello strato di terreno vegetale superficiale e di eventuali strati organici. Si prescrive comunque il coordinamento con la DL in fase di scavo per la definizione del piano di posa delle fondazioni. Sarà comunque cura dell'impresa costruttrice monitorare in fase costruttiva le quote del manufatto al fine di prevenire tempestivamente l'eventuale insorgere di cedimenti differenziali.

Pressioni massime sul terreno (SLU)

Pressioni massime sul terreno (SLE rara)

Pertanto il terreno di fondazione risulta avere le caratteristiche adeguate alla resistenza del manufatto, dato che la pressione limite di progetto assunta è pari a 6.50kPa e la pressione massima risulta esser pari a 3.8kPa .					

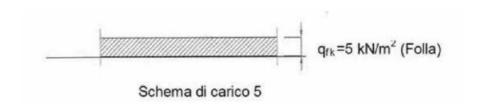
6. RELAZIONE PRELIMINARE DI CALCOLO


6.1.1. Azioni di calcolo agenti sulla passerella pedonale

Impalcato passerella

Piano di calpestio in legno massiccio	0.30	KN/mq
Totale carico permanente portato: G ₂	0.30	kN/mq
Struttura in acciaio (principale + secondaria)	1.70	kN/mq
Totale carico permanente: G ₁	1.70	kN/mq
Totale carico permanente + p.portato: G	2.00	kN/mq

6.1.2. Azioni da traffico


Azioni variabili da traffico in riferimento a manufatti riconducibili a ponti di 3a categoria

W	1.98m	n_I		1
W_{l}	1.98m		Parte rimanente	0.00m

Schemi di carico

Schema di carico 5

 $\begin{array}{c} Q_{1,k,c1} & 0kN \\ \\ q_{1,k,c1} & 5.0kN/m^2 \end{array} \label{eq:continuous}$

Azione longitudinale di frenamento

L 7.8m

 Q_3 180.00kN q_3 90.91kN/m

 $\ensuremath{\mbox{\scriptsize q}}_3$: Azione di frenamento longitudinale unitaria

L : Luce del ponte

Azione centrifuga

L'impalcato è rettilineo non vi sono effetti centrifughi da sommarsi.

Azioni da neve, vento

 $q_{5,N} \hspace{1cm} 1.32kN/m^2$

 $q_{5,V} \hspace{1cm} 1.74 kN/m \hspace{1cm} h \hspace{1cm} 3.76 m$

 $m_{5,V}$ 3.27kN m/m

: Carico da neve caratteristico al

 $q_{5,N} \hspace{1cm} suolo \\$

: Altezza del fronte soggetto a

h vento

 $q_{\text{S,V}}$: Carico da vento caratterístico agente trasversalmente alla direzione del ponte.

 $m_{5,V}$: Coppia distribuita dovuta all'eccentricità del punto di applicazione

Azioni sismiche

Per le azioni sismiche, in accordo con il §5.1.3.8 delle NTC08 si considerano come masse presenti, oltre ai permanenti i soli carichi permanentemente portati. Gli spettri elastici e di progetto sono rappresentati nei paragrafi successivi, così come il fattore di struttura adottato.

Resistenze passive

Dato lo schema statico della struttura, le resistenze passive sono considerate direttamente nel modello

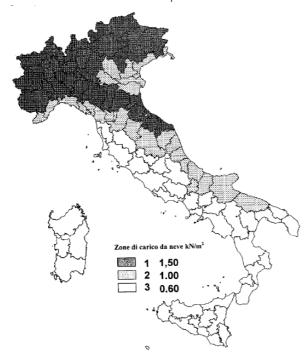
Azioni sui parapetti

 $q_8 \hspace{1cm} 1.50 kN/m$

 $h_1 \hspace{1.5cm} 0.90 m \hspace{1.5cm} h_2 \hspace{1.5cm} 1.00 m \\$

 h_{q} 0.90m

La forza di verifica del parapetto è pari a 1.5kN/m applicata ad un altezza di 0.9m distribuita su 0.50m.


Combinazioni di carico

Valori caratteristici delle azioni dovute al traffico

	Carichi verticali		Carichi orizzontali	Carichi verticali
Gruppo di azioni	Modello princ.	Folla	Frenatura	Folla
	(schema 4) (Schema di			(Schema di carico 5)
		carico 5)		
1	Valori	NO	NO	val. di comb.
1	caratteristici	NO	NO	2.5kN/mq
3	NO	NO	NO	Valori caratteristici

6.1.1. Azioni da vento

Provincia di Pordenone Vr=50 Zona 1 Alpina

as	:Altitudine di riferimento	120	m
qs,k	:Valore di carico neve al suolo	1.50	kN/m²

CE Coefficiente d'esposizione 1.10

Descr. Aree in cui la costruzione considerata è sensibilmente più bassa del

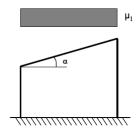
circostante terreno o circondata da costruzioni o alberi più alti

CT Coefficiente termico 1.00

Carico neve sulla copertura

Tipologia di copertura : ad una falda

α1	:Pendenza falda 1	0.00	deg
α2	:Pendenza falda 2		deg


 μ 1(α 1) :Coefficiente di forma 0.80

 $\mu 1(\alpha 2)$:Coefficiente di forma $\mu 2(\alpha 1)$:Coefficiente di forma $\mu 2(\alpha 2)$:Coefficiente di forma

Accumulo : NO

SINGOLA FALDA

as II.(a.)	1.32	kNI/m²	

6.1.1. Azioni da neve

Zona di riferimento 1- Vr=50 anni

a_s	: altitudine sul medio mare del sito	120	m
T_R	: tempo di ritorno	50	anni
α_{R}	: coefficiente amplificativo della velocità	1.00	
V_b	: velocità di riferimento	25.02	m/s
Classe di r	ugosità	b	

Aree urbane non zona A, suburbane, industriali e boschive

q_b	: pressione cinetica di r	391.20	N/m²	
C _e	: coeff. di esposizione			
		Cat. esposizione	V	
		k _r	0.23	
		Z_0	0.70	m
		Z _{min}	12.00	m
		Z	3.00	m
		C_{t}	1.00	
		C _e	1.48	

C_p	: coefficiente di forma	_		
		α	0	deg
		C _{pe,p}	-0.40	
		C _{pe,s}	-0.40	
		Aperture	2 pareti >33°	%
		C _{pi,1}	1.60	
C_d	: coefficiente dinamico		1.00	
C_{f}	: coefficiente d'attrito			
		Superficie	molto scabra	l
		C _f	0.04	
		•		
p _{c,p}	:pressione del vento so	pravento	-0.23	kN/m²
p _{c,s}	:pressione del vento so	ottovento	-0.23	kN/m²
p _f	:pressione per vento ra	dente	0.02	kN/m²

6.1.1. Azioni sismiche

Peso proprio strutturale

La massa complessiva dell'edificio valutata numericamente è pari a 15500.0 kg
Tale massa verrà incrementata del 10% per tener conto di piastrame e bullonature di connessione.
La massa totale applicata sarà dunque pari a 17050 kg

Azione sismica

Parametri geografici caratterizzanti il sito						
Coordinate	45.96236N	12.68304E	Olasaa alkaa			
Classe edificio	2		Classe d'uso	II		
Vita nominale (V _N)	50anni		Coefficiente della classe d'uso (c _u)	1.0		

I parametri geologici relativi alle caratteristiche del terreno sono stati ricavati dalla relazione geologica del

Parametri di pericolosità sismica								
S. L.	P _{VR} [%]	T, [anni]	a _o	F _o	T* _c [s]			
SLO	81	45	0.052	2.517	0.244	Stati limite di esercizio		
SLD	63	75	0.069	2.500	0.255	Stati ili file di esercizio		
SLV	10	712	0.182	2.452	0.278	Stati limite ultimi		
SLC	5	1462	0.237	2.431	0.284	Stati iii iiie ditii iii		

Categorie di sottosuolo

Tabella 3.2.II – Categorie di sottosuolo

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina).
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con $V_s > 800$ m/s).

Categoria D

Categoria di suolo adottata nei calcoli

Categorie topografiche

Tabella 3.2.IV - Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^{\circ}$
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Categoria T1	
Altezza 100%	
S _T	1.00

Categoria topografica adottata nei calcoli

Quota del sito relativa alla sommità del pendio o alla cresta del rilievo

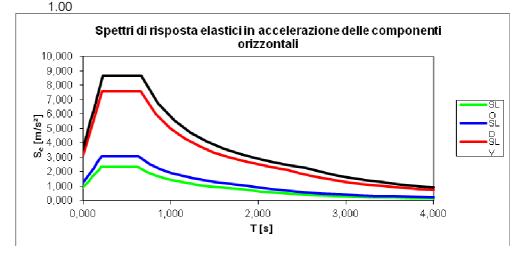
Coefficiente topografico del sito in esame

Spettro di risposta elastico in accelerazione delle componenti orizzontali

Lo spettro di risposta elastico delle componenti orizzontali è definito dalle seguenti espressioni (valide per strutture con periodo fondamentale minore o uguale a 4 s):

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split} \tag{3.2.4}$$

Utilizzando le precedenti relazioni otteniamo:


S.L.	S	T _B [s]	T _c [s]	T _D [s]		
SLO	1.8	0.206	0.617	1.80985	Stati limite di esercizio	
SLD	1.8	0.210	0.631	1.876517	Stati iii iiie di esercizio	
SLV	1.7	3 0.220	0.659	2.329116	Stati limite ultimi	
SLC	1.5	4 0.222	0.666	2.546695	Stati imite uitimi	

ξ =

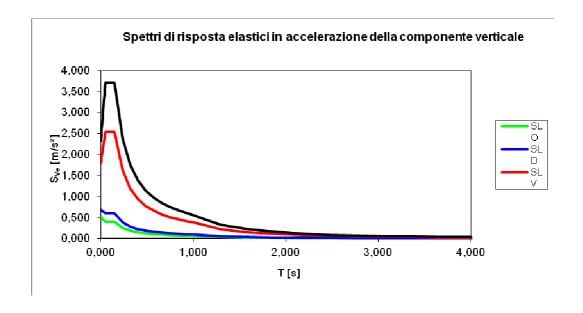
 $\eta =$

Coefficiente di smorzamento viscoso funzione di materiali, tipologia strutturale e 5% terreno di fondazione

. . .

Spettro di risposta elastico in accelerazione della componente verticale

Lo spettro di risposta elastico delle componenti orizzontali è definito dalle seguenti espressioni (valide per strutture con periodo fondamentale minore o uguale a 4 s):


$$\begin{split} 0 \leq T < T_B & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_v} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C \leq T < T_D & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \\ \end{split}$$
 dove:
$$F_v = 1,35 \cdot F_o \cdot \left(\frac{a_g}{g} \right)^{0.5} \end{split}$$

I valori di S_S , T_B , T_C e T_D per la componente verticale sono riportati nella tabella seguente.

Categoria sottosuolo	S _s	T _B [s]	T _c [s]	T _D [s]
A, B, C, D, E	1.00	0.05	0.15	1.00

Il coefficiente di topografia S_T viene assunto pari al coeffiente utilizzato per le componenti orizzontali. Utilizzando le precedenti espressioni otteniamo quindi:

S.L.	S F _v		
SLO	1.00	0.778	Stati limite di esercizio
SLD	1.00	0.887	Stati littile di esercizio
SLV	1.00	1.413	Stati limite ultimi
SLC	1.00	1.597	Stati iii iiie ditiiiii

Coefficienti sismici orizzontale e verticale per il calcolo della spinta delle terre

L'effetto del sisma sulla spinta delle terre sui muri di sostegno può essere messo in conto mediante analisi pseudostatica.

Utilizzando tale tipo di analisi l'azione sismica è rappresentata da una forza statica equivalente, pari al prodotto delle forze di gravità per un opportuno coefficiente sismico. Nell'analisi allo stato limite ultimo il coefficiente sismico orizzontale e verticale possono essere valutati mediante le seguenti espressioni:

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

$$a_{max} = S \cdot a_g = S_S \cdot S_T \cdot a_g.$$

Nella seguente tabella si riportano i risultati del calcolo.

S.L.	a _{max}	k _h	k,	
SLD	1.22	0.022	0.011	Stati limite di esercizio
SLV	3.09	0.076	0.038	Stati limite ultimi

 $\beta_{\text{m}}\,\,$: coefficiente di riduzione dell'accelerazione massima attesa al sito

a_{max}: accelerazione orizzontale massima attesa al sito

S : coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_s) e dell'amplificazione topografica (S_T) .

6.2. Predimensionamento

Alfine di determinare le caratteristiche inerziali dell'elemento principale della passerella ci si riconduce alle formule della scienza delle costruzioni per lo schema di trave su due appoggi con carico distribuito, pertanto imposta una freccia limite di L/500 si ottiene una deformata in condizione caratteristica pari a 40mm in mezzeria.

Il J_{min}sarà dunque pari a:

$$J_{min} = \frac{5}{384} \frac{qL^4}{E \ f_{max \square}} = 5.21 \ 10^9 \ mm^4$$

La trave a cassone avente pareti di spessore 20mm e di dimensioni 1500x600mm ha le seguenti caratteristiche:

 Area:
 82400mm²

 Perimetro:
 8240 mm

Momenti di inerzia principali: J_X: 5633386666.6667 mm⁴

J_Y: 23516986666.6667 mm⁴

Raggi di girazione: X: 261.4696 mm

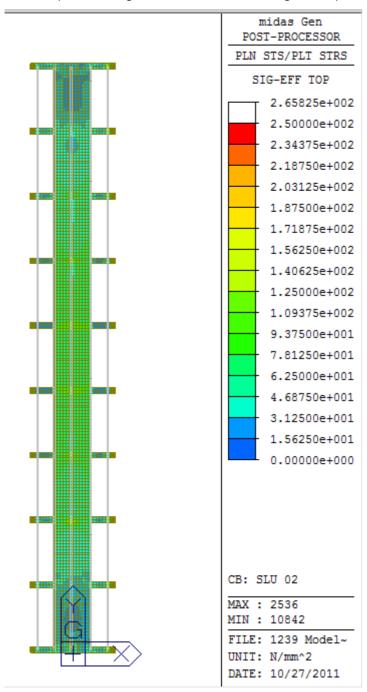
Y: 534.2287 mm

Ed è dunque pertanto sufficiente a garantire la deformata richiesta.

Per quanto attiene la massima tensione, il momento sollecitante massimo in condizione ultima è dato dalla seguente relazione:

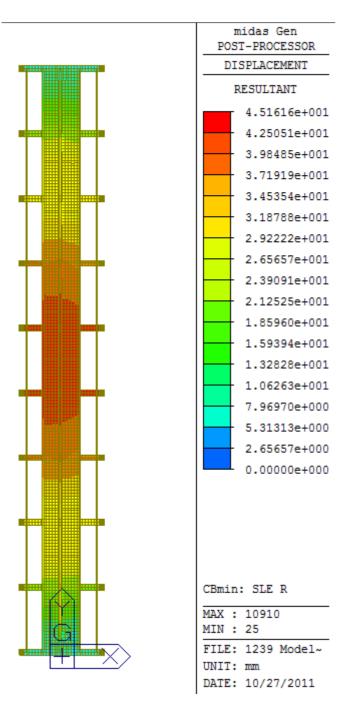
$$M_{max,SLU} = \frac{q_{SLU}L^2}{8} = 32.5 \frac{20^2}{8} = 1625 kN m$$

e dato un modulo elastico resistente della sezione pari a 5.63E9/300 = 1.88E7mm³ si ottiene una tensione massima pari a:


$$\sigma_{max} = \frac{1.6 \ 10^9}{1.88 \ 10^7} = 86.5 < 261 MPa$$

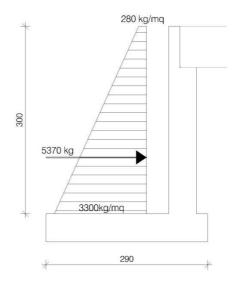
Pertanto la struttura risulta essere correttamente pre-dimensionata.

Per quanto attiene la torsione dovuta ad effetti di carico laterale, questa tipologia di strutture è da ritenersi ottimale per prevenire collassi per torsione o flesso-torsione.


Analisi preliminare FEM

Attraverso l'impiego degli elementi finiti si è analizzato il comportamento globale della struttura per ottenere un riscontro preliminare globale sulla struttura, di seguito si riportano alcune viste maggiormente significative.

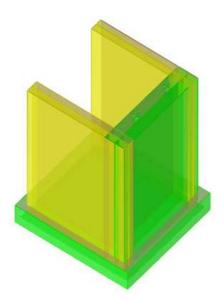
Analisi tensionale alla Von Mises


Come si evince dall'analisi tensionale, il valore ottenuto nel pre-dimensionamento risulta attendibile. Analogamente per la deformazione, la quale risulta esser superiore al valore limite imposto come base dimensionante in ragione della maggior accuratezza della progettazione. Si tenga presente che il limite preso risulta esser cautelativo, analisi più dettagliate dovranno stimare la frequenza proprio dell'impalcato alfine di consentire un uso adeguato del manufatto.

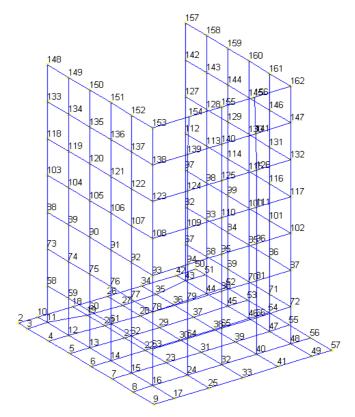
Analisi tensionale alla Von Mises

6.3. Predimensionamento spalle

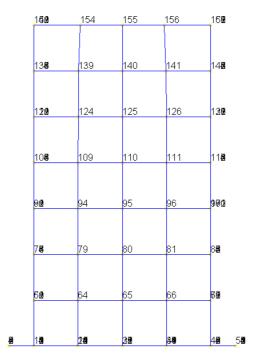
Di seguito vengono eseguite le verifiche preliminari nei confronti dell'azione ribaltante generata dalla sola spinta delle terre.



Il coefficiente di spinta a riposo dal terreno è pari a k = 1-sen $\Phi = 0.56$.


- Ragionando, in via preliminare, in termini di sovraccarichi unitari, il momento ribaltante è pari a 5370 kg x 1.5 ml = 8370 kgxml.
- Il momento stabilizzante dovuto al peso del terreno sulla platea è pari a 5400kg/ml x 2.20ml x 1.45ml = 17726 kgxml.

Pertanto la verifica risulta ampiamente soddisfatta.


Di seguito vengono riportate le verifiche dettagliate adottando un modello di calcolo agli elementi finiti:

Render modello di calcolo

Modello FEM e numerazione nodi

Modello FEM e numerazione nodi parete frontale

Di seguito vengono riportati i tabulati di calcolo del modello adottato per4 il dimensionamento:

Materiali

Descrizione: Descrizione o nome assegnato all'elemento.

Rck: Resistenza caratteristica cubica; valore medio nel caso di edificio esistente. [daN/cm2]

E: Modulo di elasticità longitudinale del materiale. [daN/cm2]

Gamma: Peso specifico del materiale. [daN/cm3]

Poisson: Coefficiente di Poisson, viene impiegato nella modellazione di elementi bidimensionali. Il valore è adimensionale.

G: Modulo di elasticità tangenziale del materiale, viene impiegato nella modellazione di aste. [daN/cm2]

Alfa: Coefficiente longitudinale di dilatazione termica. [℃-1]

C32/40 400 336428 0.0025 0.1 152921.72 0.0	Descrizione	Rck	E	Gamma	Poisson	G	Alfa
032/10 0.0025 0.10	C32/40	400	336428	0.0025	0.1	152921.72	0.00001

Armature

Descrizione: Descrizione o nome assegnato all'elemento.

fyk: Resistenza caratteristica. [daN/cm2] Sigma amm.: Tensione ammissibile. [daN/cm2]

Tipo: Tipo di barra.

E: Modulo di elasticità longitudinale del materiale. [daN/cm2]

Gamma: Peso specifico del materiale. [daN/cm3]

Poisson: Coefficiente di Poisson, viene impiegato nella modellazione di elementi bidimensionali. Il valore è adimensionale.

G: Modulo di elasticità tangenziale del materiale, viene impiegato nella modellazione di aste. [daN/cm2]

Alfa: Coefficiente longitudinale di dilatazione termica. [C-1]

Livello di conoscenza: Indica se il materiale è nuovo o esistente, e in tal caso il livello di conoscenza secondo Circ. 02/02/09 n. 617 §C8A. Informazione impiegata solo in analisi D.M. 14-01-08 (N.T.C.).

Descrizione	fyk	Sigma amm.	Tipo	E	Gamma	Poisson	G	Alfa	Livello di
									conoscenza
B450C	4500	2600	Aderenza migliorata	2060000	0.00785	0.3	792307.69	0.000012	Nuovo

Azioni e carichi

Descrizione: Nome assegnato alla condizione elementare.

Nome breve: Nome breve assegnato alla condizione elementare.

I/II: Descrive la classificazione della condizione (necessario per strutture in acciaio e in legno).

Durata: Descrive la durata della condizione (necessario per strutture in legno).

Psi0: Coefficiente moltiplicatore Psi0. Il valore è adimensionale. Psi1: Coefficiente moltiplicatore Psi1. Il valore è adimensionale. Psi2: Coefficiente moltiplicatore Psi2. Il valore è adimensionale.

Var.segno: Descrive se la condizione elementare ha la possibilità di variare di segno.

Descrizione	Nome breve	1/11	Durata	Psi0	Psi1	Psi2	Var.segno
Pesi strutturali	Pesi		Permanente	0	0	0	
Permanenti portati	Port.	I	Permanente	0	0	0	
Accidentale	Accidentale	I	Breve	0	0	0	
Spinta terre	Spinta terre	I	Lunga	0	0	0	
carico terreno	carico terreno	I	Lunga	0	0	0	
Delta T	Dt	II	Media	0	0	0	No
Sisma X SLV	X SLV			0	0	0	
Sisma Y SLV	Y SLV			0	0	0	
Sisma Z SLV	Z SLV			0	0	0	
Eccentricità Y per sisma X SLV	EY SLV			0	0	0	
Eccentricità X per sisma Y SLV	EX SLV			0	0	0	
Sisma X SLD	X SLD			0	0	0	
Sisma Y SLD	Y SLD			0	0	0	
Sisma Z SLD	Z SLD			0	0	0	
Eccentricità Y per sisma X SLD	EY SLD			0	0	0	
Eccentricità X per sisma Y SLD	EX SLD			0	0	0	
Rig. Ux	R Ux			0	0	0	
Rig. Uy	R Uy			0	0	0	
Rig. Rz	R Rz			0	0	0	

Definizioni di carichi concentrati

Nome: Nome identificativo della definizione di carico.

Valori: Valori associati alle condizioni di carico.

Condizione: Condizione di carico a cui sono associati i valori.

Descrizione: Nome assegnato alla condizione elementare.

Fx: Componente X del carico concentrato. [daN]

Fy: Componente Y del carico concentrato. [daN] Fz: Componente Z del carico concentrato. [daN]

Mx: Componente di momento della coppia concentrata attorno all'asse X. [daN*cm]

My: Componente di momento della coppia concentrata attorno all'asse Y. [daN*cm]

Mz: Componente di momento della coppia concentrata attorno all'asse Z. [daN*cm]

Nome			Va	alori			
	Condizione	Fx	Fy	Fz	Mx	Му	Mz
	Descrizione						
Massimo carico Z	Pesi strutturali	0	0	-3875	0	0	0
	Permanenti portati	0	0	-3125	0	0	0
	Accidentale	0	0	-6250	0	0	0
	Spinta terre	0	0	0	0	0	0
	carico terreno	0	0	0	0	0	0

Definizioni di carichi superficiali

Nome: Nome identificativo della definizione di carico. Valori: Valori associati alle condizioni di carico.

Condizione: Condizione di carico a cui sono associati i valori. Descrizione: Nome assegnato alla condizione elementare.

Valore: Modulo del carico superficiale applicato alla superficie. [daN/cm2]

Applicazione: Modalità con cui il carico è applicato alla superficie.

Nome		Valori	
	Condizione	Valore	Applicazione
	Descrizione		
Carico terreno	Pesi strutturali	0	Verticale
	Permanenti portati	0	Verticale
	Accidentale	0	Verticale
	Spinta terre	0	Verticale
	carico terreno	0.54	Verticale

Definizioni di carichi potenziali

Nome: Nome identificativo della definizione di carico. Valori: Valori associati alle condizioni di carico.

Condizione: Condizione di carico a cui sono associati i valori. Descrizione: Nome assegnato alla condizione elementare. Valore i.: Valore del carico pressorio alla quota iniziale. [daN/cm2]

Quota i.: Quota assoluta in cui il carico pressorio assume il valore iniziale. [cm]

Valore f.: Valore del carico pressorio alla quota finale. [daN/cm2]

Quota f.: Quota assoluta in cui il carico pressorio assume il valore finale. [cm]

Nome			Valori		
	Condizione	Valore i.	Valore f.	Quota f.	
	Descrizione				
Spinta terre	Pesi strutturali	0	0	0	0
	Permanenti portati	0	0	0	0
	Accidentale	0	0	0	0
	Spinta terre	0.03	350	0.33	0
	carico terreno	0	0	0	0

Piastre C.A.

Livello: Quota di inserimento espressa con notazione breve esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

Sp.: Spessore misurato in direzione ortogonale al piano medio dell'elemento. [cm] Punti: Punti di definizione in pianta.

I.: Indice del punto corrente nell'insieme dei punti di definizione dell'elemento.

X: Coordinata X. [cm] Y: Coordinata Y. [cm]

Estr.: Distanza dalla quota di inserimento misurata in direzione ortogonale al piano della quota e con verso positivo verso l'alto. [cm]

Mat.: Riferimento ad una definizione di materiale cemento armato.

Car.sup.: Riferimento alla definizione di un carico superficiale. Accetta anche il valore "Nessuno". Car.pot.: Riferimento alla definizione di un carico potenziale. Accetta anche il valore "Nessuno".

DeltaT: Riferimento alla definizione di una variazione termica. Accetta anche il valore "Nessuno".

Sovr.: Aliquota di sovraresistenza da assicurare in verifica.

S.Z: Indica se l'elemento deve essere verificato considerando il sisma verticale.

P.sup.: Peso per unità di superficie. [daN/cm2]

Fond.: Riferimento alla fondazione sottostante l'elemento. Fori: Riferimenti a tutti gli elementi che forano la piastra.

Livello	Sp.		Punt	i	Estr.	Mat.	Car.sup.	Car.pot.	DeltaT	Sovr.	S.Z	P.sup.	Fond.	Fori
		I.	Х	Υ										
L1	50	1	-68	0	0	C25/30	Carico terreno			0	No	0.125	FS1	
		2	222	0										
		3	222	270										
		4	-68	270										

Pareti C.A.

Tr.: Riferimento al tronco indicante la quota inferiore e superiore.

Sp.: Spessore misurato in direzione ortogonale al piano medio dell'elemento. [cm]

P.i.: Posizione del punto di inserimento rispetto ad una sezione verticale, vista dal punto iniziale verso il punto finale.

Punto i.: Punto iniziale in pianta.

X: Coordinata X. [cm]

Y: Coordinata Y. [cm]

Punto f.: Punto finale in pianta.

X: Coordinata X. [cm]

Y: Coordinata Y. [cm]

Mat.: Riferimento ad una definizione di materiale cemento armato.

Car.pot.: Riferimento alla definizione di un carico potenziale. Accetta anche il valore "Nessuno".

DeltaT: Riferimento alla definizione di una variazione termica. Accetta anche il valore "Nessuno".

Sovr.: Aliquota di sovraresistenza da assicurare in verifica.

S.Z: Indica se l'elemento deve essere verificato considerando il sisma verticale.

P.sup.: Peso per unità di superficie. [daN/cm2]

Aperture: Riferimenti a tutti gli elementi che forano la parete.

Tr.	Sp.	P.i.	Pun	to i.	Punto f.		Mat.	Car.pot.	DeltaT	Sovr.	S.Z	P.sup.	Aperture
			Х	Y	X Y								
T1	30	Centro	-48	240	202	240	C32/40			0	No	0.075	
T1	30	Centro	-48	30	202	30	C32/40			0	No	0.075	
T1	50	Centro	177	15	177 255		C32/40	Spinta terre		0	No	0.125	

Dati di modellazione

Indice: Numero dell'elemento nell'insieme che lo contiene.

Posizione: Coordinate del nodo.
X: Coordinata X. [cm]
Y: Coordinata Y. [cm]
Z: Coordinata Z. [cm]

Indice		Posizione		Indice		Posizione		Indice		Posizione		Indice		Posizione		
uicc	Х	Y	Z	maioo	х	Y	Z		Х	Y	Z		Х	Y	Z	
2	-68	0	-25	3	-48	0	-25	4	-3	0	-25	5	42	0	-25	
6	87	0	-25	7	132	0	-25	8	177	0	-25	9	222	0	-25	
10	-68	30	-25	11	-48	30	-25	12	-3	30	-25	13	42	30	-25	
14	87	30	-25	15	132	30	-25	16	177	30	-25	17	222	30	-25	
18	-68	82.5	-25	19	-37.8	82.5	-25	20	1	82.5	-25	21	43.4	82.5	-25	
22	87.4	82.5	-25	23	132.1	82.5	-25	24	177	82.5	-25	25	222	82.5	-25	
26	-68	135	-25	27	-35.6	135	-25	28	2.2	135	-25	29	43.9	135	-25	
30	87.6	135	-25	31	132.1	135	-25	32	177	135	-25	33	222	135	-25	
34	-68	187.5	-25	35	-37.8	187.5	-25	36	1	187.5	-25	37	43.4	187.5	-25	
38	87.4	187.5	-25	39	132.1	187.5	-25	40	177	187.5	-25	41	222	187.5	-25	
42	-68	240	-25	43	-48	240	-25	44	-3	240	-25	45	42	240	-25	
46	87	240	-25	47	132	240	-25	48	177	240	-25	49	222	240	-25	
50	-68	270	-25	51	-48	270	-25	52	-3	270	-25	53	42	270	-25	
54	87	270	-25	55	132	270	-25	56	177	270	-25	57	222	270	-25	
58	-48	30	28.6	59	-3	30	28.6	60	42	30	28.6	61	87	30	28.6	
62	132	30	28.6	63	177	30	28.6	64	177	82.5	28.6	65	177	135	28.6	
66	177	187.5	28.6	67	-48	240	28.6	68	-3	240	28.6	69	42	240	28.6	
70	87	240	28.6	71	132	240	28.6	72	177	240	28.6	73	-48	30	82.1	
74	-3	30	82.1	75	42	30	82.1	76	87	30	82.1	77	132	30	82.1	
78	177	30	82.1	79	177	82.5	82.1	80	177	135	82.1	81	177	187.5	82.1	
82	-48	240	82.1	83	-3	240	82.1	84	42	240	82.1	85	87	240	82.1	
86	132	240	82.1	87	177	240	82.1	88	-48	30	135.7	89	-3	30	135.7	
90	42	30	135.7	91	87	30	135.7	92	132	30	135.7	93	177	30	135.7	
94	177	82.5	135.7	95	177	135	135.7	96	177	187.5	135.7	97	-48	240	135.7	
98	-3	240	135.7	99	42	240	135.7	100	87	240	135.7	101	132	240	135.7	
102	177	240	135.7	103	-48	30	189.3	104	-3	30	189.3	105	42	30	189.3	
106	87	30	189.3	107	132	30	189.3	108	177	30	189.3	109	177	82.6	189.3	
110	177	135	189.3	111	177	187.4	189.3	112	-48	240	189.3	113	-3	240	189.3	
114	42	240	189.3	115	87	240	189.3	116	132	240	189.3	117	177	240	189.3	
118	-48	30	242.9	119	-3	30	242.9	120	42	30	242.9	121	87	30	242.9	
122	132	30	242.9	123	177	30	242.9	124	177	82.7	242.9	125	177	135	242.9	
126	177	187.3	242.9	127	-48	240	242.9	128	-3	240	242.9	129	42	240	242.9	
130	87	240	242.9	131	132	240	242.9	132	177	240	242.9	133	-48	30	296.4	
134	-3	30	296.4	135	42	30	296.4	136	87	30	296.4	137	132	30	296.4	
138	177	30	296.4	139	177	83.2	296.4	140	177	135	296.4	141	177	186.8	296.4	
142	-48	240	296.4	143	-3	240	296.4	144	42	240	296.4	145	87	240	296.4	
146	132	240	296.4	147	177	240	296.4	148	-48	30	350	149	-3	30	350	
150	42	30	350	151	87	30	350	152	132	30	350	153	177	30	350	
154	177	85	350	155	177	135	350	156	177	185	350	157	-48	240	350	
158	-3	240	350	159	42	240	350	160	87	240	350	161	132	240	350	
162	177	240	350													

Carichi concentrati

Indice: Numero dell'elemento nell'insieme che lo contiene.

Nodo: Nodo su cui agisce il carico.
Condizione: Condizione elementare mappata nella quale agisce il carico.

Exist Componente della forza lungo l'asse X. [daN]
Fy: Componente della forza lungo l'asse Y. [daN]
Fy: Componente della forza lungo l'asse Y. [daN]
Fz: Componente della forza lungo l'asse Z. [daN]
Mx: Componente del momento attorno all'asse X. [daN*cm]
My: Componente del momento attorno all'asse Y. [daN*cm]
Mz: Componente del momento attorno all'asse Z. [daN*cm]

Indice	Nodo	Condizione	Fx	Fy	Fz	Mx	Му	Mz	Indice	Nodo	Condizione	Fx	Fy	Fz	Mx	Му	Mz
1	16	Spinta terre	119.1	0	0	0	0	0	2	63	Spinta terre	317.6	0	0	0	0	0
3	64	Spinta terre	635.2	0	0	0	0	0	4	24	Spinta terre	238.3	0	0	0	0	0
5	65	Spinta terre	635	0	0	0	0	0	6	32	Spinta terre	238.2	0	0	0	0	0
7	66	Spinta terre	635.1	0	0	0	0	0	8	40	Spinta terre	238.2	0	0	0	0	0
9	72	Spinta terre	317.6	0	0	0	0	0	10	48	Spinta terre	119.1	0	0	0	0	0
11	78	Spinta terre	364.5	0	0	0	0	0	12	79	Spinta terre	728.8	0	0	0	0	0
13	80	Spinta terre	728.6	0	0	0	0	0	14	81	Spinta terre	728.8	0	0	0	0	0
15	87	Spinta terre	364.5	0	0	0	0	0	16	93	Spinta terre	299.6	0	0	0	0	0
17	94	Spinta terre	598.8	0	0	0	0	0	18	95	Spinta terre	598.4	0	0	0	0	0
19	96	Spinta terre	598.8	0	0	0	0	0	20	102	Spinta terre	299.6	0	0	0	0	0
21	108	Spinta terre	234.7	0	0	0	0	0	22	109	Spinta terre	468.8	0	0	0	0	0
23	110	Spinta terre	468	0	0	0	0	0	24	111	Spinta terre	468.7	0	0	0	0	0
25	117	Spinta terre	234.8	0	0	0	0	0	26	123	Spinta terre	170.1	0	0	0	0	0
27	124	Spinta terre	338.9	0	0	0	0	0	28	125	Spinta terre	337.2	0	0	0	0	0
29	126	Spinta terre	338.6	0	0	0	0	0	30	132	Spinta terre	170.3	0	0	0	0	0
31	138	Spinta terre	105.9	0	0	0	0	0	32	139	Spinta terre	208.9	0	0	0	0	0
33	140	Spinta terre	205.6	0	0	0	0	0	34	141	Spinta terre	208.6	0	0	0	0	0

Indice	Nodo	Condizione	Fx	Fy	Fz	Mx	Му	Mz	Indice	Nodo	Condizione	Fx	Fy	Fz	Mx	Му	Mz
35	147	Spinta terre	106	0	0	0	0	0	36	153	Spinta terre	37.3	0	0	0	0	0
37	154	Spinta terre	70.9	0	0	0	0	0	38	155	Spinta terre	70	0	0	0	0	0
39	156	Spinta terre	72.8	0	0	0	0	0	40	162	Spinta terre	36.4	0	0	0	0	0
41	17	carico terreno	0	0	-501.2	0	0	0	42	25	carico terreno	0	0	-637.9	0	0	0
43	24	carico terreno	0	0	-1.3E3	0	0	0	44	16	carico terreno	0	0	-1.0E3	0	0	0
45	33	carico terreno	0	0	-637.9	0	0	0	46	32	carico terreno	0	0	-1.3E3	0	0	0
47	41	carico terreno	0	0	-637.9	0	0	0	48	40	carico terreno	0	0	-1.3E3	0	0	0
49	49	carico terreno	0	0	-501.2	0	0	0	50	48	carico terreno	0	0	-1.0E3	0	0	0
51	57	carico terreno	0	0	-182.2	0	0	0	52	56	carico terreno	0	0	-364.5	0	0	0
53	55	carico terreno	0	0	-364.5	0	0	0	54	47	carico terreno	0	0	-1.0E3	0	0	0
55	54	carico terreno	0	0	-364.5	0	0	0	56	46	carico terreno	0	0	-996.6	0	0	0
57	53	carico terreno	0	0	-364.5	0	0	0	58	45	carico terreno	0	0	-986.9	0	0	0
59	52	carico terreno	0	0	-364.5	0	0	0	60	44	carico terreno	0	0	-964.8	0	0	0
61	51	carico terreno	0	0	-263.2	0	0	0	62	43	carico terreno	0	0	-767.1	0	0	0
63	50	carico terreno	0	0		0	0	0	64	42	carico terreno	0	0	-240.8	0	0	0
65	34	carico terreno	0	0	-413.7	0	0	0	66	35	carico terreno	0	0	-926.6	0	0	0
67	36	carico terreno	0	0		0	0	0	68	37	carico terreno	0	0	-1.2E3	0	0	0
69	38	carico terreno	0	0		0	0	0	70	39	carico terreno	0	0	-1.3E3	0	0	0
71	26	carico terreno	0	0	-451.6	0	0	0	72	27	carico terreno	0	0	-971.3	0	0	0
73	28	carico terreno	0	0	-1141	0	0	0	74	29	carico terreno	0		-1.2E3	0	0	0
75	30	carico terreno	0	0	-1.3E3	0	0	0	76	31	carico terreno	0	0	-1.3E3	0	0	0
77	18	carico terreno	0	0	-413.7	0	0	0	78	19	carico terreno	0	0	-948.6	0	0	0
79	20	carico terreno	0	0	-1.2E3	0	0	0	80	21	carico terreno	0	0	-1.2E3	0	0	0
81	22	carico terreno	0	0	-1.3E3	0	-	0	82	23	carico terreno	0		-1271	0	0	0
83	10	carico terreno	0	0	-240.8	0	0	0	84	11	carico terreno	0	0	-785.1	0	0	0
85	12	carico terreno	0	0		0	-	0	86	13	carico terreno	0		-982.3	0	0	0
87	14	carico terreno	0	0	-994.9	0	0	0	88	15	carico terreno	0	0	-1000	0	0	0
89	2	carico terreno	0	0		0	0	0	90	3	carico terreno	0	-	-263.2	0	0	0
91	4	carico terreno	0	0		0	-	0	92	5	carico terreno	0		-364.5	0	0	0
93	6	carico terreno	0	0		0	-	0	94	7	carico terreno	0		-364.5	0	0	0
95	8	carico terreno	0	0		0	0	0	96	9	carico terreno	0		-182.2	0	0	0
97	156	Pesi strutturali	0	0	-3875	0	-	0	98	156	Permanenti portati	0		-3125	0	0	0
99	156	Accidentale	0	0		0	0	0	100	154	Pesi strutturali	0		-3875	0	0	0
101	154	Permanenti portati	0	0	-3125	0	0	0	102	154	Accidentale	0	0	-6250	0	0	0

Definizioni gusci

Ind.: Numero dell'elemento nell'insieme che lo contiene.

Nodo I: Primo nodo di definizione dell'elemento.

Nodo J: Secondo nodo di definizione dell'elemento.

Nodo L: Terzo nodo di definizione dell'elemento; nel caso di elementi triangolari non è definito.

Nodo K: Ultimo nodo di definizione dell'elemento.

Sp.membranale: Spessore membranale dell'elemento. [cm] Sp.flessionale: Spessore flessionale dell'elemento. [cm] Materiale: Caratteristiche meccaniche dell'elemento. Indice: Numero dell'elemento nell'insieme che lo contiene.

Var.term.: Variazione termica a cui è soggetto l'elemento. [℃]

Sp.membranale Sp.flessionale Materiale Var.term. Sp.membranale Sp.flessionale Materiale Var.term. Ind Nodo Ind. Nodo J L K J K Indice Indice 71 3.0 3.0 3.0 3.0 30 30 143 30 30 62 63 73 74 30 3.0 3.0 30 30 136 121 136 30 66 40 0 74 40 66

Ind.	Nodo	Nodo	Nodo	Nodo K	Sp.membranale	Sp.flessionale	Materiale	Var.term.	Ind.	Nodo	Nodo	Nodo	Nodo K	Sp.membranale	Sp.flessionale	Materiale	Var.term.
	-	J					Indice			-			N.			Indice	
75	63	78	79	64	50	50	1	0	76	64	79	80	65	50	50	1	0
77	65	80	81	66	50	50	1	0	78	66	81	87	72	50	50	1	0
79	78	93	94	79	50	50	1	0	80	79	94	95	80	50	50	1	0
81	80	95	96	81	50	50	1	0	82	81	96	102	87	50	50	1	0
83	93	108	109	94	50	50	1	0	84	94	109	110	95	50	50	1	0
85	95	110	111	96	50	50	1	0	86	96	111	117	102	50	50	1	0
87	108	123	124	109	50	50	1	0	88	109	124	125	110	50	50	1	0
89	110	125	126	111	50	50	1	0	90	111	126	132	117	50	50	1	0
91	123	138	139	124	50	50	1	0	92	124	139	140	125	50	50	1	0
93	125	140	141	126	50	50	1	0	94	126	141	147	132	50	50	1	0
95	138	153	154	139	50	50	1	0	96	139	154	155	140	50	50	1	0
97	140	155	156	141	50	50	1	0	98	141	156	162	147	50	50	1	0
99	17	25	24	16	50	50	2	0	100	25	33	32	24	50	50	2	0
101	33	41	40	32	50	50	2	0	102	41	49	48	40	50	50	2	0
103	49	57	56	48	50	50	2		104	56	55	47	48	50	50	2	0
105	55	54	46	47	50	50	2		106	54	53	45	46	50	50	2	0
107	53	52	44	45	50	50	2		108	52	51	43	44	50	50	2	0
109	51	50	42	43	50	50	2	0	110	42	34	35	43	50	50	2	0
111	43	35	36	44	50	50	2	0	112	44	36	37	45	50	50	2	0
113	45	37	38	46	50	50	2	0	114	46	38	39	47	50	50	2	0
115	47	39	40	48	50	50	2	0	116	34	26	27	35	50	50	2	0
117	35	27	28	36	50	50	2	0	118	36	28	29	37	50	50	2	0
119	37	29	30	38	50	50	2	0	120	38	30	31	39	50	50	2	0
121	39	31	32	40	50	50	2	0	122	26	18	19	27	50	50	2	0
123	27	19	20	28	50	50	2	0	124	28	20	21	29	50	50	2	0
125	29	21	22	30	50	50	2	0	126	30	22	23	31	50	50	2	0
127	31	23	24	32	50	50	2	0	128	18	10	11	19	50	50	2	0
129	19	11	12	20	50	50	2	0	130	20	12	13	21	50	50	2	0
131	21	13	14	22	50	50	2	0	132	22	14	15	23	50	50	2	0
133	23	15	16	24	50	50	2	0	134	10	2	3	11	50	50	2	0
135	3	4	12	11	50	50	2	0	136	4	5	13	12	50	50	2	0
137	5	6	14	13	50	50	2	0	138	6	7	15	14	50	50	2	0
139	-/	8	16	15	50	50	2	0	140	8	9	17	16	50	50	2	0

Verifiche

Verifiche piastre e pareti C.A.

nod. nodo del modello FEM

sez. tipo di sezione (o = orizzontale, v = verticale)

B base della sezioneH altezza della sezione

Af+ area di acciaio dal lato B (inferiore per le piastre))

Af- area di acciaio dal lato A (superiore per le piastre))

c+ copriferro dal lato B (inferiore per le piastre))
 c- copriferro dal lato A (superiore per le piastre))

sc tensione sul calcestruzzo in esercizio

comb ; c combinazione di carico
c.s. coefficiente di sicurezza
N sforzo normale di calcolo
M momento flettente di calcolo
Mu momento flettente ultimo
Nu sforzo normale ultimo

 sf
 tensione sull'acciaio in esercizio

 Wk
 apertura caratteristica delle fessure

 Sm
 distanza media fra le fessure

st sigma a trazione nel calcestruzzo in condizioni non fessurate

fckresistenza caratteristica cilindrica del calcestruzzofcdresistenza a compressione di calcolo del calcestruzzofctdresistenza a trazione di calcolo del calcestruzzo

Hcr altezza critica

q.Hcr *quota della sezione alla altezza critica

hw altezza della parete lw lunghezza della parete

n.p. numero di piani

hs altezza dell'interpiano

Mxdmomento di progetto attorno all'asse x (fuori piano)Mydmomento di progetto attorno all'asse y (nel piano)

NEd sforzo normale di progetto

MEd Momento flettente di progetto di progetto

VEd sforzo di taglio di progetto

Ngrav. sforzo normale dovuto ai carichi gravitazionali

NReale. sforzo normale derivante dall'analisi

VRcd resistenza a taglio dovuta alle bielle di calcestruzzo

epsilon coefficiente di maggiorazione del taglio derivante dall'analisi

alfaS MEd/(VEd*lw) formula 7.4.15

At area tesa di acciaio

roh rapporto tra area della sezione orizzotale dell'armatura di anima e l'area della sezione di calcestruzzo rov rapporto tra area della sezione verticale dell'armatura di anima e l'area della sezione di calcestruzzo

VRsd resistenza a taglio della sezione con armature

Somma(Asj)- Ai somma delle aree delle barre verticali che attraversano la superficie di scorrimento

csi altezza della parte compressa normalizzata all'altezza della sezione

Vdd contributo dell'effetto spinotto delle armature verticali

Vfd contributo della resistenza per attrito

Vid contributo delle armature inclinate presenti alla base

VRd,s valore di progetto della resistenza a taglio nei confronti dello scorrimento

luce netta della trave di collegamento
 altezza della trave di collegamento
 spessore della trave di collegamento
 altezza utile della trave di collegamento
 area complessiva della armatura a X

M,plast momenti resistenti della trave a filo appoggio

T,plast sforzi di taglio nella trave derivanti da gerarchia delle resistenze

Muro controterra frontale

Parete fra le coordinate in pianta (177;255) (177;15) da quota -50 a quota 350 Valori in daN, cm C32/40: rck 400 fyk 4500

Verif	ica di	i st	ato	limite	ultim	0								
nod	sez	В	Н	Af+	Af-	C+	c-	c.s.	С	comb	N	M	Nu	Mu
16	0	65	50	3.4	3.4	6.8	6.8	1.444	7	SLV	10168	177324	14680	-256013
	v	75	50	4.5	4.5	5.6	5.6	6.869	7	SLV	2716	-52168	18654	358336
24	o 1	100	50	5.7	5.7	6.8	6.8	2.496	7	SLV	5689	263055	14197	-656480
	v	75	50	4.5	4.5	5.6	5.6	4.629	11	SLV	1202	-141486	5565	654948
32	0 1	100	50	5.7	5.7	6.8	6.8	4.332	1	SLV	-786	241848	-3404	-1047712
	v	75	50	4.5	4.5	5.6	5.6	5.237	7	SLV	370	140582	1938	-736210
40	0 1	100	50	5.7	5.7	6.8	6.8	2.506	5	SLV	5652	262187	14164	-657058
	v	75	50	4.5	4.5	5.6	5.6	4.639	9	SLV	1193	-141352	5536	655669
48	0	50	50	3.4	3.4	6.8	6.8	1.873	5	SLV	7800	136065	14608	-254837
	v	75	50	4.5	4.5	5.6	5.6	6.870	5	SLV	2714	-52213	18645	358682
63	0	65	50	3.4	3.4	6.8	6.8	1.584	7	SLV	10370	136439	16431	-216174
	v 1	100	50	5.7	5.7	5.6	5.6	3.811	7	SLV	3336	-181210	12713	690514
64	0 1	100	50	5.7	5.7	6.8	6.8	2.793	7	SLV	6169	210592	17231	-588238
	v 1	100	50	5.7	5.7	5.6	5.6	4.309	11	SLV	1188	-199980	5120	861762
65	0 1	100	50	5.7	5.7	6.8	6.8	6.366	1	SLV	436	143124	2773	-911083
	v 1	100	50	5.7	5.7	5.6	5.6	7.416		SLV	431	122022	3200	-904963
66	0 1	100	50	5.7	5.7	6.8	6.8	2.802	5	SLV	6130	210299	17180	-589338
	v 1	100	50	5.7	5.7	5.6	5.6	4.318		SLV	1176	-199773	5078	862719
72	0	50	50	3.4	3.4	6.8	6.8	2.056		SLV	7954	104910	16354	-215709
		100	50	5.7	5.7	5.6	5.6	3.808		SLV	3334	-181410	12696	690800
78		65	50	3.4	3.4	6.8	6.8	3.059		SLV	1521	-157623	4652	482114
		100	50	5.7	5.7	5.6	5.6	3.233		SLV	1512	-268259	4887	867189
79	0 1		50	5.7	5.7	6.8	6.8	5.360		SLV	-2152	-228699	-11537	1225939
	v 1		50	5.7	5.7	5.6	5.6	3.813		SLV	1960	-212061	7474	808691
80	0 1		50	5.7	5.7	6.8	6.8	8.439		SLV	795	97619	6712	-823810
		100	50	5.7	5.7	5.6	5.6	4.845		SLV	22	201103	108	-974253
81	0 1	100	50	5.7	5.7	6.8	6.8	5.366	1	SLV	4889	71773	26235	-385170

	v 100	50	5.7	5.7	5.6	5.6	3.809	5	SLV	1958	-212479	7457	809310
87	0 50	50	3.4	3.4	6.8	6.8	3.948		SLV	1148	-121241	4534	478685
07	v 100	50	5.7	5.7	5.6	5.6	3.229		SLV	1510	-268627	4876	867508
93	0 65	50	3.4	3.4	6.8	6.8	2.574	7	SLV	4101	135680	10555	-349181
93	v 100	50	5.7	5.7	5.6	5.6	3.706		SLV	154	-260170	569	964168
94	0 100		5.7	5.7	6.8		3.876	7		2258		8753	-778114
94		50				6.8			SLV		200733		
٥٦	v 100	50	5.7	5.7	5.6	5.6	4.027	7		808	-224460	3253	903985
95	0 100	50	5.7	5.7	6.8	6.8	10.721		SLV	116	88169	1243	-945220
0.5	v 100	50	5.7	5.7	5.6	5.6	4.151		SLV	860	-216030	3570	896830
96	0 100	50	5.7	5.7	6.8	6.8	3.881		SLV	2230	201047	8655	-780295
	v 100	50	5.7	5.7	5.6	5.6	4.023		SLV	805	-224787	3238	904311
102	o 50	50	3.4	3.4	6.8	6.8	3.325		SLV	3141	104566	10447	-347728
	v 100	50	5.7	5.7	5.6	5.6	3.711		SLV	153	-259848	566	964168
108	o 65	50	3.4	3.4	6.8	6.8	3.395		SLV	1719	134158	5838	-455513
	v 100	50	5.7	5.7	5.6	5.6	3.869		SLV	427	242925	1651	-939820
109	o 100	50	5.7	5.7	6.8	6.8	4.929	7	SLV	-236	202562	-1163	-998373
	v 100	50	5.7	5.7	5.6	5.6	4.014	7	SLV	562	-230766	2256	926267
110	o 100	50	5.7	5.7	6.8	6.8	11.366	7	SLV	-5772	207852	-65603	-2362416
	v 100	50	5.7	5.7	5.6	5.6	3.756	5	SLV	1110	-235132	4171	883241
111	o 100	50	5.7	5.7	6.8	6.8	4.933	5	SLV	-258	202895	-1272	-1000784
	v 100	50	5.7	5.7	5.6	5.6	4.010	5	SLV	561	-231003	2250	926267
117	o 50	50	3.4	3.4	6.8	6.8	4.373	5	SLV	1312	103423	5738	-452221
	v 100	50	5.7	5.7	5.6	5.6	3.872		SLV	426	242736	1650	-939820
123	0 65	50	3.4	3.4	6.8	6.8	4.799		SLV	-2526	-177570	-12122	852156
	v 100	50	5.7	5.7	5.6	5.6	3.498		SLV	1259	250997	4403	-878089
124	0 100	50	5.7	5.7	6.8	6.8	6.854	7	SLV	-2530	197261		-1352035
	v 100	50	5.7	5.7	5.6	5.6	3.413		SLV	655	-271456	2235	926597
125	0 100	50	5.7	5.7	6.8	6.8	11.712		SLV	-6458	218793		-2562499
123	v 100	50	5.7	5.7	5.6	5.6	3.580		SLV	817	254525	2924	-911167
126	0 100	50	5.7	5.7	6.8	6.8	6.851		SLV	-2541	197577		-1353563
120	v 100	50	5.7	5.7	5.6	5.6	3.421		SLV	653	-270838	2235	926597
132	0 50	50	3.4	3.4	6.8	6.8	6.107		SLV	-1950	-136711	-11910	834849
132	v 100		5.7	5.7						-1950 1259		4403	-878089
120		50			5.6	5.6	3.498		SLV		250994		
138	0 65	50	3.4	3.4	6.8	6.8	4.254		SLV	-2862	-200586	-12178	853381
	v 100	50	5.7	5.7	5.6	5.6	3.862		SLV	-311	-259786	-1200	1003419
139	0 100	50	5.7	5.7	6.8	6.8	7.699		SLV	-6641	-268518	-51125	2067276
	v 100	50	5.7	5.7	5.6	5.6	2.257		SLV	1424	400765	3215	-904637
140	o 100	50	5.7	5.7	6.8	6.8	16.131		SLV	-7239	207135		-3341387
	v 100	50	5.7	5.7	5.6	5.6	3.165		SLV	183	304486	579	-963832
141	o 100	50	5.7	5.7	6.8	6.8	7.694		SLV	-6651	-268795	-51169	2068107
	v 100	50	5.7	5.7	5.6	5.6	2.260		SLV	1426	400303	3222	-904637
147	o 50	50	3.4	3.4	6.8	6.8	5.403		SLV	-2205	-154541	-11913	835054
	v 100	50	5.7	5.7	5.6	5.6	3.857	9	SLV	-307	-260066	-1184	1003078
153	o 65	50	3.4	3.4	6.8	6.8	23.322	1	SLV	-1980	-67075	-46177	1564339
	v 50	50	2.3	2.3	5.6	5.6	3.121	15	SLV	-380	-134792	-1186	420619
154	o 100	50	5.7	5.7	6.8	6.8	47.761	11	SLV	-6829	-126756	-326168	6054005
	v 50	50	2.3	2.3	5.6	5.6	1.512	15	SLV	648	245829	979	-371721
155	o 100	50	5.7	5.7	6.8	6.8	30.791		SLV	-4540	-121764	-139805	3749295
	v 50	50	2.3	2.3	5.6	5.6	2.443		SLV	852	141868	2082	-346602
156	o 100	50	5.7	5.7	6.8	6.8	47.795		SLV	-6830	-126705	-326434	6055881
	v 50	50	2.3	2.3	5.6	5.6	1.513		SLV	649	245660	981	-371571
162	0 65	50	4.0	4.0	6.8	6.8	26.531		SLV	-1988	-66996	-52748	1777484
	v 50	50	2.3	2.3	5.6	5.6	3.130		SLV	-380	-134425	-1190	420777
	* 50	50	2.5	2.5	5.0	5.0	3.130	10	Э Б v	550	131123	1170	120777

Stampa delle verifiche manuali

Verifica di stato limite ultimo

Verifica	a di	base									
sez B	H	Af+	Af-	C+	C-	c.s.	comb	N	M	Nu	Mu
o 234	50	13.6	13.6	6.8	6.8	4.402	3 SLV	5711	402500	25140	-1771767
Sezione	vert	icale									
v 400	50	22.6	22.6	5.6	5.6	5.272	11 SLV	-1627	777467	-8579	-4098706
Sezione	vert	icale									
v 400	50	22.6	22.6	5.6	5.6	5.099	9 SLV	-64	767689	-324	-3914552